Intelligent enterprise, 09.06.2014 |
О задачах Business Intelligence (BI) в современном крупном банке, а также о построении оптимальных механизмов управления развитием
Intelligent Enterprise: Несмотря на значимость направления Business Intelligence в крупном корпоративном, а уж тем более в банковском бизнесе, центр BI в. качестве выделенного подразделения можно встретить не часто. Поэтому хотелось бы услышать от вас, что это за департамент и каково его место в структуре управления
Ирина Елистратова: На мой взгляд, создание выделенного подразделения, обладающего всеми необходимыми функциями — от поддержки ИТ до
Руководство банка определяет клиентскую и продуктовую стратегию совместно со стратегией развития технологий и аналитики для управления бизнесом.
Изначально было решено создать подразделение, которое должно отвечать за выпуск любой отчетности, будь то управленческая, которая, как известно, необходима для принятия решений, или обязательная, представляемая регуляторам. Центр BI полностью обеспечивает процесс создания нового аналитического продукта для банка, начиная от сбора
Поэтому в состав Центра BI входят фактически все роли и компетенции специалистов, которые создают и используют
Сейчас же Центр BI входит в блок «Финансы» с прямым подчинением финансовому директору
«Финансы» дает ту независимость цифр, о которой так часто идет спор между разными блоками. При этом мы имеем возможность всем
Наверное, все же уместно отметить, что при всей значимости
В данном смысле ваше подчинение финансовому директору, с одной стороны, выглядит вполне логичным, но с другой — финансы лишь одно из подразделений банка со своими задачами и приоритетами, и такая подчиненность может создать некий перекос в его сторону…
Рабочие процессы различных подразделений и использование
Подчинение финансовому директору имеет под собой несколько иные цели. Дело в том, что любая деятельность банка все равно связана с определенной финансовой моделью.
Речь идет о своеобразном арбитраже приоритетов разных направлений банка, требующем информационной поддержки в виде
При этом в рамках утвержденного портфеля задач и в соответствии с приоритетами для бизнеса банка каждое подразделение использует именно ему необходимые данные, производит расчеты по своим правилам, если нужно, «проваливается» в детализацию, повышает оперативность получения отчетов. В результате достигаются поставленные банком цели. Собственно именно для этого силами Центра BI и развиваются аналитические системы, и для этого у нас работают специалисты, обладающие различными компетенциями.
В основе построения интенсивно используемых систем анализа данных, с которыми к тому же работают специалисты самых разных подразделений, обычно лежат мощные корпоративные хранилища. Есть ли такое хранилище у вас, и что вы могли бы вообще сказать о прикладной архитектуре, лежащей в основе успешно функционирующего
Конечно, хранилище данных, которое является ядром и единой базой для всей аналитики, у нас существует. Его архитектура определяется из функций, задач и сервисов для бизнеса, которые должны решаться в банке. Проектирование хранилища начинается от модели данных.
Не секрет, что отраслевые модели данных для хранилища — довольно популярная тема. На рынке разные поставщики предлагают различные модели для банковской сферы.
Мы же построили свою модель, так как ключевые сотрудники Центра BI имеют большой опыт внедрения хранилищ данных в банковской сфере.
Такая модель в
Поверх этого слоя строятся раз личные витрины данных, которые нацелены на решение конкретных
Например, есть витрина для клиентской отчетности корпоративного банка, финансовая витрина. У этих витрин имеются свои регламенты по обновлению, свои
Ответов на вопрос, почему создаются отдельные витрины, несколько.
Чего мы достигаем в результате построения архитектуры «хранилище плюс витрины»? Конечно, это гибкость и масштабируемость. Если завтра у нас появится еще несколько направлений бизнеса или по тем или иным причинам нужно будет соединить маркетинг с корпоративным бизнесом, не должно возникнуть такого сценария, который потребовал бы существенной переделки существующего решения, это будет развитие платформы.
Далее речь идет об устойчивости к нагрузкам. Если, скажем, все продавцы из розничного направления разом начнут анализировать данные, это никак не должно помешать оперативной аналитической работе других подразделений. И это общее правило должно быть справедливо для всех.
Весь аналитический функционал, включая само хранилище и все имеющиеся витрины данных, наверное, приходится развивать в сотрудничестве не с одной и нес двумя
Детальный слой нашего хранилища мы развиваем в сотрудничестве с одной компанией, которая, пожалуй, является самым давним нашим партнером в сфере развития технологий BI. По сути их команда росла вместе с нашими аналитиками. Что касается витрин, то по каждой из них фактически работают отдельные партнеры. В этой политике есть целый ряд преимуществ.
Вместе с тем работу разных поставщиков действительно надо координировать. Мы это делаем в основном за счет выработки единых архитектурных принципов и формирования процессов, гарантирующих, что любой подрядчик будет вынужден обязательно их придерживаться.
Разумеется, на наших сотрудниках лежит ответственность за взаимодействие подрядчиков между собой.
Когда, например, одна команда дорабатывает детальный слой ядра хранилища, то другая, разрабатывающая новую витрину данных для корпоративного блока, должна иметь возможность в полной мере воспользоваться новыми наработками. Все это в основном вопрос наличия специалистов, ролевых функций, процессов и регламентов.
С развитием хранилищ, витрин и
Что вы могли бы сказать по этому поводу?
Моя карьера в
Управление качества данных входит в состав Центра BI и является одним из значимых и важных подразделений. Повышение качества данных — удовольствие для любой компании весьма дорогое, поэтому тут нужен очень взвешенный, рациональный ив значительной степени избирательный подход к тому, какие данные необходимо улучшать, каков должен быть целевой процент их качества для каждой задачи.
Более конкретно речь идет о двух активностях. Первая связана с проведением аудита качества данных по заказу
Мы рассматриваем, какие ошибки в последнее время возникали сточки зрения ввода и использования данных. Строим некоторую систему мониторинга. Что касается непосредственно решения проблемы, то всегда анализируем, что можно сделать автоматически, без участия человека.
Приблизительно раз в квартал мы анализируем совокупность накопившихся доработок
Вторая активность связана с обеспечением заданного качества данных по операциям ручного ввода.
Нашим менеджерам, работающим с ключевыми корпоративными клиентами, предоставлена большая свобода по самостоятельному выбору вариантов заключения сделки, и это как раз один из характерных примеров. Тут мы, как правило, анализируем всю цепочку в ручном режиме, смотрим, на каком этапе чаще всего совершаются ошибки, стараемся оперативно информировать об этом
При этом вся наша работа обязательно должна подкрепляться грамотными схемами мотивации клиентских менеджеров. Они должны быть заинтересованы в том, чтобы вводить правильные данные.
В последнее время бизнес начал понимать, что огромный потенциал скрыт в синергии информационных ресурсов разных компаний. Это понимание не в последнюю очередь происходит вследствие развития концепции Big Data, но в любом случае она затрагивает вопросы использования хранилищ данных.
Как вы прокомментировали бы это?
На мой взгляд, это интересное направление, и потенциал здесь весьма велик. Надо сказать, что бизнес
Что касается технологических аспектов, задач интеграции информационных ресурсов, сейчас на рынке много решений, предназначенных для сферы Big Data, конечно же это новое направление и при реализации будут возникать проблемы и сложности, но, на мой взгляд, по мере развития они будут решаться (так происходит со всеми новыми технологиями в начале использования).
Архитектурно мне представляется, что к классическим хранилищам будут постепенно добавляться слои, в основном наполненные неструктурированными данными из внешних источников. Соответственно найдут широкое распространение технологии, позволяющие работать с этой информацией как с единым логически связанным ресурсом.
Готовность бизнеса двигаться вперед по пути синергии данных также представляется интересным вопросом. Как известно, своими данными не любит делиться никто. Но главное, нам предстоит четко понять, насколько эффективно при том или ином сценарии синергии данных можно зарабатывать, где баланс между затратами и рисками, как правильно использовать вновь появляющиеся программные и аналитические инструменты. Ведь решение задач интеграции информации в масштабах огромного количества данных, извлечение из этой информации полезной аналитики — вещь более чем не дешевая, и без этого понимания осторожность бизнеса будет совершенно оправданна.